
Quantum Algorithms 2/7/2023

Lecture 5: Quantum State

Instructor: Dieter van Melkebeek

Last lecture, we finalized our model of quantum computing, allowing intermediate measurements
in addition to local unitary transformations. One complication is that the state of the system is
no longer fully captured by a superposition. In order to obtain a full description, we introduced
mixed states, which are probability distributions over superpositions. Today, we discuss a better
way to represent mixed states, namely density matrices.

1 Solution Exercise #3

You were asked to give an example of two quantum circuits on the same number of qubits that
behave the same on all basis states but not on all pure states. There are many solutions. All of
them need to use at least one measurement operations. We present two simple ones: one involving
one intermediate measurement, and one with only final measurements.

1.1 Solution 1

Consider (a) H vs (b) H
In basis states, the first measurement has no effect, so the output for (b) is the same as (a).

Starting with basis states |0〉 and |1〉, the output distribution is that of a fair coin toss.
Given the pure state |+〉, the output of (a) is 0, but the output of (b) is a fair coin toss.

1.2 Solution 2

Consider the Hadamard gate H = 1√
2

[
1 1
1 −1

]
vs XH = 1√

2

[
1 −1
1 1

]
Appending a measurement to the end of each, we get (a) H and (b) XH
Given the basis states |0〉 and |1〉, both output distributions represent a fair coin toss.
Given the pure state |+〉 we get:

1√
2

[
1 1
1 −1

]
|+〉 =

1√
2

(
1√
2

[
1 1
1 −1

]
)

[
1
1

]
=

1

2

[
1− 1

1 +−1

]
= |0〉

1√
2

[
1 −1
1 1

]
|+〉 =

1√
2

(
1√
2

[
1 −1
1 1

]
)

[
1
1

]
=

1

2

[
1 + 1

1−−1

]
= |1〉

Whereas the output of (a) is always 0, the output of (b) is always 1.

1.3 Conclusion

The main takeaway from this exercise is that just describing how a circuit behaves on the basis
states is no longer enough. As we argued last lecture, it is enough for unitary circuits, i.e., quantum
circuits without measurements.
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Figure 1: Single qubit system

2 Quantum State

What does “state” mean? State captures all information about a system to predict how a system
will behave when future operations are applied in the future. State descriptions must be sufficient,
meaning that two systems with the same description should be indistinguishable. The descriptions
ideally are also necessary, meaning there is no redundant information. If two systems have different
descriptions, then there is some sequence of operations where the systems behave differently.

2.1 Pure States

Recall that a pure state is given by |ψ〉 =
∑

s αs |s〉 with
∑

s |αs|2 = 1 representing a superposition
of basis states. A measurement in the standard basis is enough to distinguish any two superpositions
|ψ〉 and |ψ′〉 such that |αs| 6= |α′s| for at least one basis states s. This is because the measurement
in state |ψ〉 yields s with probability |αs|2, and in state |ψ′〉 with the different probability |α′s|2.
For example, the states corresponding to the red and blue dots in Figure 1 can be distinguished
this way.

More generally, we can distinguish |ψ〉 and |ψ′〉 as long as they are not parallel, i.e., they differ
by more than a global phase. This is because there exists a unitary transformation that brings |ψ〉
to the basis state |0m〉. As the transformation needs to preserve angles, it brings |ψ′〉 to a pure
state that does not have all of its weight on the basis state |0m〉. Thus, after the transformation
we’re in the above situation, in which a measurement can distinguish the two states. An example
of this situation are the states corresponding to the red and green dots in Figure 1.

Two superpositions that only differ by a global phase cannot be distinguished physically. This
is because measurements of such states yield the same probability distributions, and unitary oper-
ations preserve the property of two states only differing by a global phase.

In conclusion, the only redundancy in the representation of pure states as superpositions is the
global phase. The phase of one of the basis states with nonzero weight can be set arbitrarily, say
to 0 (meaning that the coefficient is real).

2.2 Mixed State

A mixed state can be described as a set of pairs {(pi, |ψi〉)}i for a probability distribution p and
pure states |ψi〉. Suppose we are in a mixed state {(12 , |α〉), (

1
2 , |β〉)} consisting of an equal mixture
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of |α〉 and |β〉, where |α〉 and |β〉 are two orthogonal 1-qubit states with real coefficients. For
example, we could have |α〉 = |0〉 and |β〉 = |1〉, or |α〉 = |+〉 and |β〉 = |−〉.

What is the probability that we obtain 0 when we measure the qubit? If we are in the pure state
|α〉 given by the black dot in Figure 1, the probability that we measure 0 is the length square of
the projection of |α〉 onto |0〉, which is cos2(θ). By the same token, since the state |β〉 is orthogonal
to |α〉, the probability that we measure 0 in that state equals cos2(θ±π/2) = sin2(θ). Since we are
in an equal mixture of |α〉 and |β〉, the overall probability of measuring 0 is

1

2
cos2(θ) +

1

2
sin2(θ) =

1

2
.

Thus, we obtain 0 and 1 with equal probability. Note that this conclusion is independent of θ. In
particular, we obtain the same distribution whether we are in the mixed state {(12 , |0〉), (

1
2 , |1〉)} or

in the mixed state {(12 , |+〉), (
1
2 , |−〉)}, namely a uniform random bit

If we apply some unitary operations before the measurement, the two mixtures we have before
the measurement are also both of the same type, i.e., equal mixtures of two orthogonal states with
real coefficients, up to possibly changing the phase of the basis vector |1〉. This is because unitary
operations preserve angles, and we can always change the global phase so that the coefficient of
|0〉 is real. As a result, the measurement will again give a uniform random bit. Thus, after the
measurement we are in a mixture of 50% |0〉 and 50% |1〉, irrespective of the initial angle θ. As
soon as we are in the equal mixture of |0〉 and |1〉, there is no chance of distinguishing the two
states afterwards. Thus, even though the two mixtures {(12 , |0〉), (

1
2 , |1〉)} and {(12 , |+〉), (

1
2 , |−〉)} are

different when represented as probability distributions over pure states, they cannot be physically
distinguished. Therefore, the way the way of describing mixed states as probability distributions
over pure states contains superfluous information. The alternate description using density operators
addresses that shortcoming.

3 Density Operators

3.1 Pure States

Consider the pure state |ψ〉 and measure it in an orthonormal basis |φj〉. We want to calculate the
probability that we see one specific basis state.

Pr[measure |φj〉] = | 〈ψ|φj〉 |2 = 〈φj |ψ〉 · 〈ψ|φj〉 = 〈φj | · ρ · |φj〉 (1)

where ρ
.
= |ψ〉 〈ψ|. We can justify the steps in Equation 1 as follows.

1. Pr[measure |φj〉] = | 〈ψ|φj〉 |2: The probability of one particular basis state equals the length
of the projection of the state on the basis state, squared.

2. | 〈ψ|φj〉 |2 = (〈ψ|φj〉)∗ · 〈ψ|φj〉 = 〈φj |ψ〉 · 〈ψ|φj〉, where we use the fact that (AB)∗ = B∗A∗

and |ψ〉∗ = 〈ψ|.

3. 〈φj |ψ〉 · 〈ψ|φj〉 = 〈φj | · (|ψ〉 〈ψ|) · |φj〉
.
= 〈φj | · ρ · |φj〉 using associativity.

For example, if we are in |ψ〉 = |0〉,

ρ = |ψ〉 〈ψ| =
[
1
0

] [
1 0

]
=

[
1 0
0 0

]
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Note that the matrix ρ is the outer product of |ψ〉 with itself. It has rank one as all of the columns
are equal to |ψ〉 up to some scalar. This will be the density matrix (operator) representation
of the pure state |ψ〉. By Equation 1, when we are in the pure state and we know ρ, we know what
the probability distribution is of the measurement outcome in any basis |φi〉.

3.2 Mixed States

For mixed state {(pi, |ψi〉)}i:

Pr[measure |φj〉] =
∑
i

pi 〈φj | · ρi · |φj〉 = 〈φj | · (
∑
i

piρi) · |φj〉 = 〈φj | · ρ · |φj〉

where ρ
.
=
∑

i pi · ρi. The first step follows because the probability of observing a specific basis
state |φj〉 is the weighted sum of the probabilities of observing |φj〉 over all components |ψi〉 of
the mixture, where the weight of the component |ψi〉 is the one from the mixture; for a given
component |ψi〉, the probability of observing |φj〉 is given by Equation 1 for |ψ〉 = |psii〉. The
second step follows by linearity.

Thus, all information about the probability distribution of measuring a mixed state in any
orthonormal basis |φj〉 is contained in the matrix ρ, called the density operator of the mixed state.

Definition 1. The density operator of the mixed state {(pi, |ψi〉)}i is ρ
.
=
∑

i pi |ψi〉 〈ψi|.

4 Evolution of Density Operator

If a density operator of the system is given at the beginning of a computation, and the operations are
all unitary or measurements, we have enough information to calculate the density operator after the
operation. Below, we show how this is true for both unitary operations and partial measurements.

4.1 Unitary Operation

Assume we are in a pure state |ψ〉 and we apply the unitary operation U : |ψ′〉 = U |ψ〉. The density
operator after the operation would become:

ρ′
.
= |ψ′〉 〈ψ′| = (U | |ψ〉)(U | |ψ〉)∗ = U |ψ〉 〈ψ|U∗,

where (U | |ψ〉)∗ is the complex conjugate transpose. Note that ket turns into a bra.
We have that

ρ′ = UρU∗ (2)

Thus, the new density operator is comprised of the old one with an operation performed upon it.
If we were to start with a mixed state, Equation 2 would remain true by linearity due to a

mixed state being a convex combination of the pure states.

4.2 Partial Measurement

A partial measurement can be represented as projections Ps onto subspaces with a subspace for
each available outcome s. For example, for a single qubit, there are two possible subspaces due to
the possible outcomes |0〉 and |1〉. The effect of the measurement on a pure state is that we cancel
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all components that are not consistent with the outcome of the measurement, and then renormalize.
The probability of a particular outcome s is the squared length of that projection:

Pr[measure s] = ||Ps |ψ〉 ||22.

Once we measure s, the new state becomes

Ps |ψ〉
||Ps |ψ〉 ||2

.

Before we know the outcome of the measurement, the system is in a mixed state with one component
for each possible outcome s.

ρ′ =
∑
s

||Ps |ψ〉 ||22 ·
Ps |ψ〉
||Ps |ψ〉 ||2

〈ψ|P ∗s
||Ps |ψ〉 ||2

=
∑
s

Ps |ψ〉 〈ψ|P ∗s =
∑
s

Ps |ψ〉 〈ψ|Ps,

where we used the fact that P ∗s = Ps for an orthogonal projection Ps. We have that

ρ′ =
∑
s

PsρPs. (3)

Once again, the new density operator is comprised of the old one with an operation performed
upon it. The formula extends to mixed states by linearity.

Linearity. Note that for both types of operations, unitaries and partial measurements, the new
density operator is obtained from the old one through a linear transformation, namely (2) and
(3), respectively. In contrast, in the superposition formalism, unitaries act linearly but partial
measurements generally do not due to the required renormalization. Apart from the uniqueness of
representation for mixed states that we’ll argue later in this lecture, the linearity of all operations
is another advantage of the density operator formalism.

5 Example Density Operators

5.1 Basis States

|0〉 : ρ0 =

[
1
0

] [
1 0

]
=

[
1 0
0 0

]
|1〉 : ρ1 =

[
0 0
0 1

]
5.2 Pure States

|+〉 (= H |0〉) : ρ+ =
1√
2

[
1
1

]
1√
2

[
1 1

]
=

1

2

[
1 1
1 1

]
= Hρ0H

∗

|−〉 (= H |1〉) : ρ+ =
1√
2

[
−1
1

]
1√
2

[
−1 1

]
=

1

2

[
1 −1
−1 1

]
= Hρ1H

∗
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5.3 Mixed States

Consider {(12 , |0〉), (
1
2 , |1〉)} (e.g., obtained by measuring |+〉)

ρ =
1

2

[
1 0
0 0

]
+

1

2

[
0 0
0 1

]
=

1

2

[
1 0
0 1

]
= P0ρ+P0 + P1ρ+P1

Consider {(12 , |+〉), (
1
2 , |−〉)}. Remember, this mixed state and the previous one are indistin-

guishable as argued in Section 2.2.

ρ =
1

2
ρ+

1

2
ρ− =

1

2
· 1

2

[
1 1
1 1

]
+

1

2
· 1

2

[
1 −1
−1 1

]
=

1

2

[
1 0
0 1

]
This is the same matrix we reached in the first mixed state example, which witnesses the fact that
the these two mixed states cannot be distinguished.

6 Trace of a Matrix

What follows is a review of the trace of a matrix, a function that calculates the sum of the diagonal
elements. Equations 4, 5, and 6 represent properties of the trace

Definition 2. Tr(A) =
∑

iAii

The trace function has the following elementary properties.

Tr(AT ) = Tr(A) (4)

Tr(AB) =
∑
i,j

AijBij = Tr(BA) (5)

Tr(ABC) = Tr(CAB) (6)

(4) and (5) follow directly from the definition. (6) follows from (5) and associativity of matrix
multiplication; it represents a cyclic invariance property of the trace function. The trace function
can also be expressed in terms of the eigenvalues of the matrix.

Theorem 1. Tr(A) =
∑

i λi, where each eigenvalue λi of A is counted according to its algebraic
multiplicity.

The algebraic multiplicity is found by taking the characteristic equation det(A − λI) = 0. The
eigenvalues λ are the roots of the characteristic equation, and the algebraic multiplicity of λ is the
number of times λ occurs as a root.

Proof (for the case where matrix A has a full basis of eigenvectors). Consider the matrix V whose
columns form a basis of eigenvectors of A. We can write AV = V Λ, where Λ is a diagonal matrix
consisting of the eigenvalues of A. We have that

Tr(A) = Tr(V ΛV −1) = Tr(V −1V Λ) = Tr(Λ)

The step: Tr(V ΛV −1) = Tr(V −1V Λ) is a result of the cyclicity property (6). �
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7 Properties of Density Operators

The following Properties are true for density operators ρ
.
=
∑

i pi |ψi〉 〈ψi|:

◦ Tr(ρ) = 1. For pure states this follows from the cyclicity property:

Tr(ρ) = Tr(|ψ〉 〈ψ|) = Tr(〈ψ|ψ〉) = Tr(1) = 1.

The result for mixed states follows by linearity and the fact that probabilities add up to 1.

◦ ρ is Hermitian: ρ∗ = ρ This follows right away in case of pure states. For mixed states, the
property follows because the pi’s are real numbers.

◦ ρ is positive semidefinite. That is, for each |φ〉: 〈φ| · ρ · |φ〉 ≥ 0. This can be shown by:

〈φ| · ρ · |φ〉 = 〈φ| ·
∑
i

pi |ψi〉 〈ψi| · |φ〉 =
∑
i

pi 〈φ| |ψi〉 〈ψi| |φ〉 =
∑
i

pi| 〈ψ|φ〉 |2 (7)

∑
i pi| 〈ψ|φ〉 |2 ≥ 0 because all pi’s are nonnegative, and the absolute value squared of 〈ψ|φ〉

is also nonnegative.

In fact, the above three properties characterize the set of density operators.

Theorem 2. A is a density operator iff A is a Hermitian positive semidefinite matrix with Tr(A) =
1

Proof. We already proved the direction ⇒. We now prove ⇐.
Since A is Hermitian, it has an orthonormal basis of eigenvectors |ψi〉. We have that A |ψi〉 =

λi |ψi〉 for some λi ∈ C. We can compactly write these equations as

A =
∑
i

λi · |ψi〉 〈ψi| . (8)

Since A is positive semidefinite, for each i, the quantity 〈ψi| ·A · |ψi〉 needs to be a nonnegative real.
As 〈ψi| · A · |ψi〉 = λi 〈ψi|ψi〉 = λi, this means that the eigenvalues λi are nonnegative reals. As
Tr(A) = 1, they add up to 1. Thus the λi’s can be thought of as probabilities, and the right-hand
side of (8) as the density matrix of the mixed state {(λi, |ψi〉)}i. �

Theorem 3. Mixed states are distinguishable iff density operators differ.

In other words, there exists some quantum circuit that distinguishes between two states with
positive probability iff the states have different density operators. Equivalently, we have the con-
trapositive: two states always behave the same iff they have the same density operator. Due to the
equivalence between distinct states and density operators, we may use the terms interchangeably.

Proof. Assume that two density operators are the same. We showed in the previous sections that
we only need the density operator in order to describe the outcome of some quantum process. We
gave an expression for the density operator corresponding to the next state of the system as a
function of the density operator for the current state. Thus, any quantum process operating on
two states with the same initial density operators evolves the same for both of the states, results
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in the same final density operator for the two final states, and, the same probability for the final
measurement. Thus, we cannot distinguish the two states.

Now, consider two distinct density operators ρ1, ρ2. Let σ = ρ1 − ρ2. σ is Hermitian because
differences of Hermitian operators are Hermitian. Therefore, σ can be diagonalized over a basis of
orthonormal eigenvectors {|ψi〉}i:

σ =
∑
i

λi |ψi〉 〈ψi| for ~λ 6= ~0.

Now, we measure ρ1, ρ2 in the basis {|ψi〉}i.

Pr [measure |ψi〉 in state ρ1] = 〈ψi| ρ1 |ψi〉

Pr [measure |ψi〉 in state ρ2] = 〈ψi| ρ2 |ψi〉

These must differ for at least one i because the expansion of their difference σ on the basis element
|ψi〉 is λi. Since ~λ 6= ~0, this difference will be nonzero in some component i. Thus, there is a
nonzero difference in probability that we measure state |ψi〉 for the densities ρ1, ρ2. �

8 Exercise #4

In a next lecture we will discuss the use of density operators in systems where some of the qubits
are under control of some party (Alice) and the rest of some other party (Bob). In preparation
of that lecture, consider an EPR pair (Einstein-Podolsky-Rosen), i.e., a two-component system in
that state

1√
2

(|00〉+ |11〉)

Alice holds the first component, Bob holds the second, and they are separated.

1. Describe the density operator for the entire system:

(a) at the start

(b) after Bob’s component is measured, and

(c) after the outcome is announced.

2. Can you describe Alice’s view of her qubit by a density operator at each point in time (a),
(b), and (c)? Hint for (a): Deferred measurement exercise.
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